TRIGONOMETRIC RATIOS OF GENERAL ANGLES
WEEK 5
SUBJECT: FURTHER MATHEMATICS
CLASS: SS1
TOPIC: TRIGONOMETRIC RATIOS OF GENERAL ANGLES
CONTENT:
- QUADRANTS AND ANGLES
- BASIC TRIGONOMETRIC RATIOS
- RATIOS OF GENERAL ANGLES
- RATIOS FOR SPECIAL ANGLES
450,600.
QUADRANTS AND ANGLES
The direction to which angles are measured can either be clockwise or anticlockwise. The plane is divided into four partitions by the axes. Each partition is called a quadrant.
The Y – axis and X – axis divides the plane into 4 parts (or 4 quadrants) as shown in the figures below:
Angles are measured relative to the positive x-axis. A positive angle is measured anti-clockwise while a negative angle on the other hand is measured clockwise.
BASIC TRIGONOMETRIC RATIOS
In your Junior School, you learn about angles and how they are measured. Can you still recall how to find the sine of an angle? The below can guide you.
A
B
C
The reciprocal relations corresponding to the three basic ratios are defined as follows:
In summary,
Example 1: If is acute and cos = , find;
- Tan
- Sin
- Cot
- cosec
- sec
Solution
A
5
B
C
Using Pythagoras theorem:
c2 = a2 + b2
52 = 32 + b2
b2 = 52 – 32
= 25 – 9
= 16
b = 4
Thus, a = 3, b = 4 and c = 5
- Tan =
Example 2: Find the complementary angles of the following:
- Sin 36
- Cos 52
- Tan 72
- Sin 15
Solution
A
5
B
C
In the right-angled triangle above where <ACB = 90
90
and
Hence,
- Sin 36 = cos ( )
= cos 54
- Cos 52 = sin ( )
= sin 38
- Tan 72 = cot ( )
= cot 18
- Sin 15 = cos
= cos 75
RATIOS OF GENERAL ANGLES
Consider a situation when is rotated anticlockwise, where then:
1st quadrant 00
Sin
Tan
R
2nd quadrant00)
R
3rd quadrant00)
R
3rd quadrant00)
R
Summarily:
In the first quadrant all the ratios are positive. In the second quadrant, only sine is positive, others are negative.In the third quadrant, only tangent ratio is positive, others are negative. In the fourth quadrant, only cosine is positive while others are negative.
Example 1:
What is the value of the following?
- Sin1300 b. c. Tan2400 d. Sin3200 e. Cos2900
Solution:
- Sin1300
- Tan2400
- Cos290
The final values of the above can be derived from tables.
Ratios for Special Angles
- Angle 450
P
Q
R
450
The angle 450 is an isosceles
222
22
- Angle 300
60
60
30
30
P
R
Q
Let PQR be equilateral triangle. From the diagram
- Angle 600
From the same diagram angle 60 gives us the following:
- Angles 00 and 900
For an angle of a triangle to be zero, then it wil be a situation that the other two angles are right angle. In the same vein the opposite side to the angle is also 00.
P
Q
R
1
1
0 | 0 | 0 | 0 | 0 | |
1 | |||||
Example 1: Without using tables, find the values of the following leaving your answer in surd form.
- Sin 1350 b. Tan2400 c. cos2100 d. Sin23300 e. 2Sin1200Cos1200
Solution:
- Sin 1350
- Tan2400
- Cos2100
- Sin233002
- 2Sin1200Cos1200
Example 2: Find the value of
Solution:
Example 3:A pole leaning against a vertical wall makes an angle of 300 with the wall. The foot of the pole is 5m from the wall. Find the length of the pole.
Solution:
The solution to a problem like this becomes easy using trigonometric ratio.
F
P
30
W
We have FWP where FPW we are to find
We can equally find the area of a triangle, if two side is given and the angle between them.
Example 4:
Calculate the area of ABC given that /AB/=10cm, /BC/= 8cm and <B=30
Solution: Area of a triangle
10cm
8cm
h
300
A
B
C
Area of triangle 2
Example 5: ABC is an isosceles triangle in which /AB/=/AC/=15cm. Calculate SinC.
Solution:
15cm
15cm
24cm
A
B
C
Note that <ABC = <ACB, Bisector of angle A will bisect /BC/.
2 =152 – 122 . h = 9cm. Hence, SinC
Example 6: That angle of elevation of the top T of a vertical pole P on level ground is 600. The distance from P to the foot of the pole is 55m. calculate the height of the pole.
Solution: Sketch the information.
T
R
60
55m
m
pole
P
CLASS ACTIVITY
- Without using tables, find the values of the following in simplified surd form where necessary.
- b. Sin2225+cos2225
- In the triangle below <A=450<C=300 and the height is 10cm. find /AC/ and then find the area of the triangle . leave your answer in surd form.
450
300
10cm
A
B
C
PRACTICE QUESTIONS
Objective Test:
Choose the correct answer from
- Evaluate Sin600Cos600 without using table or calculator
- What is the value of Sin30tan245
- The value of tan1350 is
- The value of Sin3150 is
- Calculate Sin2450 + cos2450