Third Term Examinations JSS 2 Mathematic
Examination malpractices may lead to a repeat of the subject or suspensions don’t be involved.
Subject: Mathematics Class: J S S 2
Section A
- Find the value of 40+628+320 (a)680
- 625 (c) 420 (d) 348
- The product of 106 and 2.5 is (a) 2620 (b) 265 (c) 3050 (d) 420
- The square root of 0.01 is (a) 15 (b)
- 12 (d) 10.5
- Find the value of 9– (a) 91 (b) 81 (c)
- Find the L.C.M of 4x and 6x (a) 18x (b) 112x (c) 12x (d) 24×2
- Divide 420 by 20 (a) 31 (b) 80 (c) 21 (d) 42
- Simplify 8a – (3a + a) (a) 11a + 1 (b) 24a – 8 (c) 5a + 1 (d) 4a
- Reduce 93𝑎𝑏𝑎2 𝑏 2 to it lowest term (a) 6ab2 𝑏 3𝑏 (b) (c) (d) 3𝑎 𝑎
- A piece of stair carpet is 9.20m long and 0.48m wide. Estimate the area of the carpet (a) 4.5m2 (b) 5m2 (c) 4.42m2 (d) 5.5m2
- Simplify 12𝑥𝑦2 (a) 2𝑥 (b) 2𝑥𝑦 2 (c) 2 (d) 18𝑥2𝑦 3𝑥𝑦 3𝑦 3𝑥 6𝑥 𝑦 2
- If p=9, q=3, evaluate (𝑝)2 (a) 9 (b) 15 𝑞(c) 18 (d)
- Find HCF of 7x3y and 14x2y3 is (a) 7x2y (b) 7x2y2 (c) 14x2y2 (d) 21x2y
- Solve 3x – 4 = – 2x + 16 (a) x = 4 (b) x = 5 (c) x = 6 (d) x = 8
- Solve the inequality 3x + 2 < 23 (a) x<7 (b) x<8 (c) x<21 (d) x<9 Locate the points shown on the grid in the graph below
0 1 2 3 4 5 6 7 8 9 10 11 12
Use the graph above to answer questions 18
– 20
- What is the mathematical name of the shape ABCD? (a) kite (b) rectangle (c) trapezium (d) rhombus
- Subtract ab from cd in y axis (a) 18
- 20 (c) 46 (d) 18
- Find the value of c+d – b+e (a) -5 (b) 6
- 5 (d) 10
What is the name of shape above (a) kite (b) pentagon (c) rectangle (d) parallelogram
- Equilateral triangle has its three angles equal (a) No (b) yes (c) either f the two (d) none of the above.
X
-1 0 1 2 3 4 5
What is the value of inequality shown above? (a) x>21 (b) x≥ 4 (c) x ≤ 2 (d) x > 2
- Expand (x-3) (x+5) (a) x2+8x-15 (b) x2+5x-3x-15 (c) 3x2-5x+3x (d) x2+6×2+3x+10
Expand and simplify (a) ax+5a (b) x+5
(c) ax2+10 (d) x2 + 25
- Find the inequalities illustrated in the numbers line shown below.
-3 -2 -1 0 1 2 3 4 5
(a) x≤ 5 (b) x ≤ -2 (c) x ≥ 3 (d) x>5
- Simplify
3𝑦
- Reduce to its lowest term (a)
10𝑎𝑏 2𝑥
2
𝑎𝑏
(d)
2𝑥 3𝑥 2
- Solve (d)
7𝑎
3
- The following shapes belong to the same family EXCEPT (a) rectangle (b) rhombus (c) kite (d) parallelogram
- If 5 is multiplied by its multiplicative inverse, the result is (a) (b) – (c) 1 (d) –
- Find the value of a in 3a – 5 = 25 (a) 10 (b) 15 (c) 5 (d) -10
- Solve the inequality 3x+2 < 20 (a) x<6 (b) x<8 (c) x<7 (d) x<9
- Find the value of 0.069 x 0.38 (a) 0.02622 (b) 0.398 (c) 0.00975 (d) 0.59
Use the following shapes to answer questions 36 – 38
A B C
- What is the name of shapes B? (a) isosceles triangle (b) kite (c) pentagon (d) rectangle
- How many shapes has in diagram C above? (a) 2 (b) 4 (c) 3 (d) 5
- What is the name of shapes A? (a) kite (b) rhombus (c) parallelogram (d) trapezium
- Find the value for the inequality shown below.
x
-5 -4 -3 -2 -1 0 1 2 3 4 5
(a) X<4 (b) x> 5 (c) x≤ 4 (d) x ≥ 3
- Change to decimal number (a) 0.625
(b) 0.75 (c) 0.85 (d) 0.975
Part B
Answer 3 questions only in this part
1a. Simplify the following fractions and reduce its lowest term.
6𝑥𝑦3 9𝑎5 𝑏3 i ii 3𝑎 3 𝑏 3 ii
𝑥−2 14 b Simplify i x 2 ii
7 (𝑥−2)
8𝑡 4𝑡
(𝑝−𝑡)2 ÷ (𝑝−𝑡) 3
- Solve the following algebraic fractions
2𝑥−3 3𝑥+4 2(𝑥−2)
i + ii (x-6) –
3 2
𝑥−3 𝑥+1 5𝑥 iii. – +
2 3 4
2 4
- 3 – +
𝑥 3𝑥
- Use the linear equation, y = 2x+3 and the table prepared below to plot a
straight – line graph. Take the value of
x from -3 to +2
- -3 -2 -1 0 1 2
- -3 -2 0 3 5 7
4a Represented each of these
inequalities in number line
(a) x ≤ 5 (b) x ≥ -2
(c) x > 3 b Solve the following inequalities (a) 8 +
2x > 3 + 5x (b) 5x – 4 > 8
5a Think of a number add 5 to it and multiply the result by 3, the answer is
- What is the number? b Solve the equation
(i) 5x – 10 – 3x = 2x + 20 – 3x.
2(3−2𝑥) 𝑥
- 6 + 4
MID-TERM EXAMINATION (2019)
J.S. 2 Time: 40 minutes
- The HCF of 7x3y and 14x2y3 is (a) 14x3y3 (b)14x2y (c) 7x2y (d)7x2y2
4𝑥+ 1 𝑥−5 5+3𝑥
- Simplify – (a) (b) (c)
- 12 4
2𝑥+ 2 15𝑥+ 1
(d)
- 12
- Find value of y in 3y -6 =12 (a) y=6 (b) y=5 (c) y=9 (d) y=12
- Solve 2(2x-3)= 15 (a) 3 (b) 5 (c) -6 (c) d
- Solve the equation 𝑚 + 4 = 1 (a) o (b)
13 (c) -9 (d) -13
- Solve the inequality 3x + 2 < 23
(a)x<21 (b) x<8 (c) x<9 (d) x<7
- There were at least 8000 people who watched the football match. This can be written in inequality as (a) x ≥ 8000
(b) x < 8000 (c) x > 8000 (d) x ≤ 8000
- The value of x in the diagram below is X =
-4 -3 -2 -1
(a) X ≤ -1 (b) x ≥ -1 (c) x = -1 (d) x -1
- Simplify and reduce it to its lowest
2 4 19𝑥 𝑦 2 3𝑥 2 6𝑥 3𝑥 2 9𝑥
term (a) (2 b) (c) (d)
3𝑥𝑦 𝑦 𝑦 𝑦 6𝑦
- Factorize ab2 – a2b3 + a2bc (a) a(ba2b+ab) (b) ab(b-ab2+ac) (c)ac(b2ab2+ac) (d) a2b2(b+a2b3+c)
Part B
Answer one question from this section, each question carries equal marks.
- Simplify and reduce to its lowest term
- 12𝑎2 𝑐 3 ii. 10𝑛2 𝑚 2
16𝑎3𝑐 5𝑚3
- Solve the equations
- 4x + 6 = -3x – 8 ii. 5x – 10 – 3x = 2x + 20 – 3x
- Simplify the following fractions
- 3𝑥 – 2𝑥 ii. 5 – 3
8 6 2𝑥 4𝑥
- Solve the following fractions
- (x – 2) –
2𝑥−3 3𝑥−8 ii. +
7 14