1st Term Examination MATHEMATICS

EDU DELIGHT TUTORS 

LAGOS STATE 

 

1st Term Examination

MATHEMATICS

 

JSS 3

Part a – Objective

Instruction: answer all questions correctly.

  1. Factorize 3m2 – 48 (a)3m (m-16) (b)3m (m+16) (c)3(m-4) (m-4) (d)(m+4)(m-4)
  2. Simplify – (a) (b) (c) (d)
  3. The volume of a sphere is given by the formula V=4/33, where r is the radius. Express r in terms of V and ᴫ (a)3 (b) (c)  (d))3
    4ᴫ               4ᴫ             3V         3V
  4. Subtract 1001two from 1110two and convert your answer to base ten (a)3 (b)5 (c)7 (d)8
  5. D    E2  The mathematical symbol is a typical example of ___________ variation (a)direct (b)inverse (c)joint (d)partial
  6. Multiply (3 + b) by (4 + 2b) (a)2b2 + 10b + 7 (b) 2b2 + 7b + 10 (c) 2b2 + 10b + 12 (d) 2b2 + 12b + 10
  7. Solve for x in 3(x+2) = 2(x+2) (a)4 (b)2 (c)-2 (d)-4
  8. Write 0.0000649 in standard form (a)6.49 x 10-5 (b)6.49 x 103 (c)6.49 x 10-3  (d)6.49 x 105
  9. Make d the subject of the formula 3ᴫ d = V (a)v (b)v (c)v (d)v

3d    ᴫd   3ᴫ   3ᴫd

  1. Which of the following groups of numbers form a Pythagorean triplets? (a)8, 10, 12 (b)6, 8, 10 (c)4, 6, 8 (d)2, 4, 6
  2. Approximate 9852 to I significant figure (a)10,000 (b)9,000 (c)9,800 (d)9,850
  3. Factorize 2x (5a+2) – 3y (5a +2) (a)2y – 5a – (5a +2x) (b)(2x – 3) (5a + 2) (c)3y (5a+2)-3x (5a + 2) (d)(2x – 3y) (5a + 2)
  4. Solve MMXXVII – MCMXCII (a)LV (b)XLV (c)XXXV (d)XXV
  5. Convert 77ten to a number in base two (a)1111111two (b)1111101two (c)1111011two (d)1001101two
  6. Simplify – 4 x – 2 x – 3 (a)-½ (b)-2 (c)-3 (d)2

-2 x – 6

  1. Factorize 24 pz – 8pr (a)8p (3z-r) (b)8p (z-3r) (c)8p(3z+r) (d)8p (z+3r)
  2. Express as a single number 3.8×104 – 9.7×103 (a)28300 (b)49700 (c)59300 (d)59700
  3. Express 0.009238 to 3 significant figures (a)0.001 (b)0.009 (c)0.00924 (d)0.0092
  4. If x varies directly as y and inversely as z, write down this relationship (a)x=y (b)x=ky (c)x = kyz (d)x=kz

z                         y

  1. Solve the equation: 4 – z = z (a)-½ (b)½ (c)2 (d)-2

7

 

 

 

 

 

THEORY

Attempt all five questions

 

  1. What is the sum of the binary numbers: 1101, 1110 and 1001

 

  1. If x varies directly with y and inversely with z, when x = 8, y = 2 and z = 5. Find y when x  =2 and z = 10

 

  1. Solve 3x + 1x – 5 = 1

4           12

 

  1. Factorize 81 + 18a + a2

 

  1. Make r the subject of the formula in v= ᴫr2h