Theory of Logarithms: Laws of Logarithms and application of Logarithmic equations and indices
SUBJECT: MATHEMATICS
CLASS: SS 3
TERM: FIRST TERM
WEEK 1 DATE:_______________________
THEORY OF LOGARITHMS AND LAWS OF LOGARITHMS
In general, the logarithm of a number is the power to which the base must be raised in order to give that number. i.e if y=nx, then x = logny. Thus, logarithms of a number to base ten is the power to which 10 is raised in order to give that number i.e if y =10x, then x =log10y. With this definition log10100= 3 since 103= 1000 and log10100 = 2 since 102=100.
Examples:
1. Express the following in logarithmic form
a) 2-6 = 1/64 b) 35 =243 c) 53 = 125 d) 104 = 10,000
Solutions
1. (a) 2-6 = 1
64
∴log2 (1/64) = -6
(b)35 = 243
∴ log3243 =5
(c)53 =125
∴ log5125 = 3
(d) 104 = 10,000
∴log1010000 = 4
2. Express the following in index form
a) Log2(1/8) = -3 (b) Log10(1/1000) = -2 (c) Log464 (d) Log5625
(e) Log101000
Solutions
a) Log2 (1/8)= -3
Then 2-3 = 1/8
b) Log10(1/100) = -2
Then 10-2 = 1/100
c) Let Log464 = k
Then 4k = 64
Simplify 64; 4k = 43
Then k = 3
d) Let Log5625 = m
Then 5m = 625
5m = 54
m = 4
e) Let Log101000 = p
Then 10p = 1000
10p = 103
P = 3
Evaluation: Evaluate the following logarithms
- Log48 2. Log6216 3. Log80.0625 4. Log3125 5. Log5625 6. Log0.3125
Solutions
1) Log48 = log21 * 2
2) Log6216 = log26216
3) Log80.0625 =log 8 + 0.0625
4) Log3125 = log314
5) Log5625 = log53125
Basic Laws of Logarithms
- Log mn = Log m + Log n
- Log (m/n) = Log m – Log n
- Log mp = pLog m
- Log 1 = 0
- Logmm = 1
- Log (1/m)n= Log m-n = -nLog m
- Log m”n = n Log m
- Log (m/n) = (-n)/(mn) Log m + 1/m Log n
- 1. Let logm x=a and logxn=b, then logmx = a+b
Change of base
Log mn = Logan
Logam
Examples:
1. Express as logarithm of a single number 2Log3 + Log6
solution:
2log3 + log 6
= log32+ log 6 = log 9 + log 6
= Log 9 x6 = Log 54
2. Simplify Log 8 ÷ Log 4
Solution:
Log 8 ÷ log 4 = log 23 = 3log2 = 3/2
log 22 2log2
3. Evaluate 3log2 + log 20 – log 1.6
Solution
= log23 + log 20 – log(16/10)
= log 8 + log 20 – log (8/5)
= log (8 x 20÷ 8/5)
= log (8 x 20 x 5 ÷ 8)
= log 100 = log102 = 2log 10 = 2
Evaluation:
1. Simplify the following: a. ½ log 25 b. 1 + log 3 c. log 8 + log 4
2. Evaluate log 45 – log 9 + log 20
3. Given that log 2 = 0.3010, log 3 = 0.4771 and log 7 = 0.8451, evaluate a. log 42 b. log 35
4. Solve 22x – 10 x 2x+ 16 = 0
Solution:
22x – 10×2 + 16 = 0
Simplify the equation by removing all powers of 2 and x. Then
Further Application of Logarithms using tables:
Examples:
Use the tables to find the log of:
(a) 37 (b) 3900 to base ten
Solutions
1. 37 = 3.7 x 10
=3.7 x 101(standard form)
=100.5682 + 1 x 101 (from table)
=101.5682
Hence log1037 = 1.5682
2. 3900 = 3.9 x 1000
=3.9 X 103 (standard form)
=100.5911 x 103 (from table)
=100.5911 + 3
=103.5911
Therefore log103900 = 3.5911
Evaluate the following using tables
1. 4627 x 29.3
2. 819.8 ÷ 3.905
3.
48.63 x8.53
15.39 x 3.52
Solutions
1. 4627 x 29.3
No Log
4627 3.6653
29.3 1.4669
135600 5.1322
4627 x 29.3 = 135600 (4 s.f)
2. 819.8 ÷ 3.905
No Log
819.8 2.9137
3.905 0.5916
209.9 2.3221
Therefore 819.8 ÷ 3.905 = 209.9
3. 48.63 x 8.53
15.39 x 3.52
No log
48.63 1.6869
8.53 0.9309
Numerator 2.61782.6178
15.39 1.1872
3.52 0.5465
Denominator1.7337 1.7337
7.658 0.8841
Therefore 48.63 x 8.53 = 7.658
15.39 x 3.52
Evaluation
Use logarithms tables to calculate
1. 36.12 x 750.9 2. 319.63 x 12.282 x 74
113.2 x 9.98
General evaluation
1. Change the following to logarithms form
a. 25 ½ = 5 b. (0.01)2 = 0.0001
2. Change the following to index form
a. Log31 = 0 b. Log15225 =2
3. Evaluate the following using logarithms tables
a. 69.7 x 44.63
25.67
b. 17.9 x 3.576 x 98.14
c.
(35.61)2 x 5.62
3√143.5
Reading assignment: NGM for SSS BK1 pg 18 – 22 and ex. 1c Nos 19 – 20 page 22
Weekend Assignment
1. Find the log of 802 to base 10 (use log tables) (a) 2.9042 (b) 3.9040 (c) 8.020 (d)1.9042
2. Find the number whose logarithm is 2.8321 (a) 6719.2 (b) 679.4 (c) 0.4620 (d) 67.92
3.
What is the integer of the log of 0.000352 (a) 4 (b) 3 (c) 4 (d)3
4. Given that log2(1/64) = m, what is m ? (a) -5 (b) -4 (c) -6 (d) 3
5. Express the log in index form: log1010000 =4 (a) 103 = 10000 (b) 10-4 = 10000 (c) 104 = 10000
(d) 105 =100000
6. Simplify
log10 (2/25) – log 10( 4/125)
a. log 10 2/25 = 0.3010½b. log 10
4/125=½c. log 10
16/(5 x 25)=1/5
7. Evaluate: log 10 (67) + 1/log10 (81) – 2
a. log 10 67 = 3½b. log 10 81 = 4 c. 1/log 10 81 – 2= 1/4-2= -3/4 d. log 10 67+ 1/log 10 81 – 2 = 3+ 1/-3 –2=-1.5
8. Change the following to index form: log2 (7) + log 0.0081 (a) 5 (b) 4 (c) 6 (d) 7
a. log 2 7=1½b. log 0.0081=∴c.ln2x + ln1/8100=5d.ln(7) + ln0.0081 = 1+ ∴-ln100 = 6
9. Evaluate: 12log 10 (1000 x 473) – 15log 10 (0.8)
a. 12log 10 (1000 x 473)=12½(x2/3) -15 log10(0.8)=12½(-1/3) -15 ∴=1-5 = 10
b. 12log10(1000×473) – 15log10(0.8)= 12½(-1/3x1000x4/3) – 15∴(-1/8)=10-15 ∴= 5
c. 12log 10 (1000 x 473)-15 log 10 (0.8) = 100-120 = -20
10. Given that log2(64) = 4, find the value of 64÷log 2 (a) 1 (b) 2 (c) 4 (d) 16
Theory
1.
Evaluate using logarithm table 6.28 x 304
981
and express your answer in the form A X 10n, where A is a number between1 and 10 and n is an integer.
2. Use logarithm table to calculate 6354 x 6.243 correct to 3 s.f.
39253.3
3. Use logarithm table to calculate 826 ÷ 4.115 correct to 3 sf
197.62
4. Simplify the following expression: ln 5 + ln 2 – ln 6 + ln8 – 1/ln10 (a
16.76 x 0.0323
log10 16.76 = 2 x 0.0323 =0.0988 (2 sf)
ln(16.76) + ln2 – ln6 + ln8 – 1/ln10=4+1/-3-4+1/+10= 4-7/31= 16.