MID TERM TEST FIRST TERM MATHEMATICS SS 2

           

FIRST TERM MID TERM TEST 

Class: SS 2 Time: 1hr. Subject: Mathematics

 

Answer all questions in SECTION A

  1. Simplify; 2log3 6+log3 12- log 16 (a) 2 (b) 3 (c) 2- 2 log3 2 (d) 4- log3 2
  2. Given that log a= log8 4, find a (a) 2 ½ (b) 41/3 (c) 42/3 (d) 22/3
  3. Evaluate (0.13)3 correct to three significant figures (a) 0.00219 (b) 0.00220 (c) 0.00300 (d) 0.00390
  4. Evaluate 5-3log35 x 22log32 (a) 8 (b) 11/8 (c) 5/2 (d) 1/8
  5. If log183 + log33 – log x3 =3, find x (a) 1 (b) 2 (c) 0 (d) 3
  6. A chord is 5cm from the center of a circle of diameter 26cm. Find the length of the chord (a) 16cm (b) 18cm (c) 24cm (d) 25.51cm
  7. A chord is 2cm from the center of a circle. If the radius of the circle is 5cm, find the length of the chord. (a) 2√21cm (b) 42cm (c) 219cm (d) 21cm
  8. A chord of length 6cm is drawn in a circle at radius 5cm. Find the distance of the chord from the center of the circle. (a) 2.5cm (b) 3.0cm (c) 3.5cm (d) 4.0cm
  9. A chord is 5cm away from the center of a circle of radius 13cm. calculate the length of the chord. (a) 7cm (b) 9cm (c) 12cm (d) 24cm
  10.  An equilateral triangle of side 3cm is inscribed in a circle. Find the radius of the circle (a) 2/3 cm (b) 3cm (c) 1cm (d) 2cm
  11.  Factorize 6x2 + 7x-20 (a) (6x-5) (x+4) (b) 2(3x-5) (c) (x-3) (2x-5) (d) (3x-4)(2x+5)
  12.  Factorize 2x2 + x-15 (a) (a) (2x-3)(x+5) (b) (x+3)(2x-5) (c) (x-3) (x-5) (d) (2x+3) (x-5)
  13.  Factorize y2 + y (2p+q) + 2pq 
  14. (y-2q)(2y-p) (b) (y-q)(y+q)  (c) (y-q)(y-2q) (d) (2y+9)(y+p)
  15.  Factorize 27p2 x2 – 48y2 (a) 9(3px-4y)(b) 3 (3px-4y)(3px-4y) (c) 9(Px-4y)(3px-4y) (d) 3(3px-4y)(3px+4y) 
  16.  Factorize 9(x+y)– 4(x-y)2  (a) (x+y)(5x+y) (b) (x+y)(c) (x+5y)(5x+y) (d) 5(x+y)
  17.  Factorize m(2a-b) -2n(b-2a) (a) (2a-b)(2n-m) (b) (2a+b)(m-2n) (c) (2a-b)(m+2n) (d) (2a-b)(m-2n)
  18. If log2= 0.3010 and log 2y =1.8062. Find correct to the nearest whole number the value of y  (a) 6 (b) 5 (c) 4 (d) -5
  19. In the diagram PQS= 650, RPS= 400 and QSR=200.           Find PsQ (a) 850 (b) 600 (c) 550 (d) 450
  20.  If logpq = T, express P in terms of q and r (a) P =qr (b) P = rq (c) P = r/q (d) P= qr
  21.  Evaluate (3.2)2 –(4-8)2 (a) -0.80 (b) -1.60 (c) -10.24 (d) – 12.80    3.2 + 4.8
  22. Simplify log8              (a) 2/3 (b) ½ log 2 (c) 3/2 (d) log 2          Log 4 – log2
  23. In the diagram, angle 2000 is subtended at the center of the circle. (a) 300 (b)    500 (c) 800 (d) 1000
  24.  Find the quadratic equation whose roots are –1/2 and 3  (a) 2x2 – 2x + 3= 0 (b) 2x2 – 2x- 3=0 (c) 2x2– 5x- 3=0 (d) 2x2 – 5x – 3= 0
  25.  Simplify 0.000215 x 0.000028 and express your answer in standard form. (a) 6. 03 x 109 (b) 6. 02 x 109 (c) 6.03 x 10-9 (d) 6.02 x 10-9 
  26. A car uses one litre of petrol every 14km. If one litre of petro cost N63, how far can the car go with N 900.00 worth of petrol? (a) 420km (b) 405km (c) 210 km (d) 200km
  27.  Express (0.0425 2.5) as a fraction (a) 17/10,000 (b) 17/1000 (c) 17/250 (d) 17/10
  28.  In a triangular ABC, /AC/ = 18m and /AB/ = 10m. if <ABC = 1200.  Find angle ACB (a) 27.20 (b) 28.00 (c) 28.80 (d) 29.00
  29. Find the value of x in the figure below (a) 20√6 (b) 15√6 (c) 56 (d) 3√6
  30. Find the value of O in the diagram above (a) 300 (b) 600 (c) 1000 (d) 1200
  31.  In a triangle PQR, PQ=1cm,QR= 2cm and PQR = 1200, find the largest side of the triangle (a) √3cm (b) 7cm (c) 3cm (d) 7cm 

 

SECTION B

Answer question number 1 and any other 3 

  1. (a) Use mathematical tables to evaluate 2.067  0.0348 x 0.538
  2. (b) Without using mathematical table or calculator, evaluate 0.18x 125   0.05 x 0.2
  3. (c) Evaluate and express your answer in standard form 4.56 x 3.6    0.12
  4. (d) Solve the simultaneous equations logx10 + logy10 =3, and logx10 + 2logy10= 3
  5. (e) Given that log210= 0.3010 and log 7 = 0.4771. calculate the value of 
  6. log54     ii. Log0.24
  7. (a) An equilateral triangle of sides 30cm is inscribed in a circle. Calculate The radius of the circle 
  8. Distance between the sides of the triangle and the centre of the circle
  9. The length of a chord of a circle is 10cm. if the radius of the circle  is 13cm. Find the distance of the chord from the centre
  10. (a) Given that P= x+ym3, find M in terms of P,X and Y.
  11. (b) Using the method of completing the square, find the roots of the equations    x2 – 6x + 7= 0. Correct to 1 decimal place.
  12. (c) The product of two consecutive positive odd numbers is 195. By constructing a quadratic equation and solving it, find the two numbers
  13. (a) If       and B are the roots of the quadratic equation 2x2– 5x + 3= 0
  14.      Find new equations whose roots are: (i)      2,B2 (ii)      -1, B-1 (iii) 1/    1/
  15. (b) Find the sum and the product of the roots of the equation (a) 5x2 – 4x-9=0(b) 2x2+ 9x=6
  16. In a ABC, a= 7.1cm, b= 9.5cm and B= 63018. Solve the triangle completely 
  17.       N.B (credit will be given, for making a sketch of the given information) 
  18. The sides of a parallelogram are 7cm and 10cm and one of its diagonals is 15cm. use the cosine formula to find the length of the other diagonal
  19. (a) Evaluate 4.762×0.007853
  20.                                0.0129               using mathematical table
  21.      (b) Evaluate log42 + log161/2 –log432
  22.      (c) Calculate the length of the chord of a circle of radius 26cm, if the chord is          10cm from the center of the circle 
  23.       (d) Find the equation whose sum and product of roots are (i) -5,6 (ii) 1.5,-1.2
  24.