MID TERM TEST FIRST TERM MATHEMATICS SS 2
FIRST TERM MID TERM TEST
Class: SS 2 Time: 1hr. Subject: Mathematics
Answer all questions in SECTION A
- Simplify; 2log3 6+log3 12- log 16 (a) 2 (b) 3 (c) 2- 2 log3 2 (d) 4- log3 2
- Given that log a= log8 4, find a (a) 2 ½ (b) 41/3 (c) 42/3 (d) 22/3
- Evaluate (0.13)3 correct to three significant figures (a) 0.00219 (b) 0.00220 (c) 0.00300 (d) 0.00390
- Evaluate 5-3log35 x 22log32 (a) 8 (b) 11/8 (c) 5/2 (d) 1/8
- If log183 + log33 – log x3 =3, find x (a) 1 (b) 2 (c) 0 (d) 3
- A chord is 5cm from the center of a circle of diameter 26cm. Find the length of the chord (a) 16cm (b) 18cm (c) 24cm (d) 25.51cm
- A chord is 2cm from the center of a circle. If the radius of the circle is 5cm, find the length of the chord. (a) 2√21cm (b) 42cm (c) 219cm (d) 21cm
- A chord of length 6cm is drawn in a circle at radius 5cm. Find the distance of the chord from the center of the circle. (a) 2.5cm (b) 3.0cm (c) 3.5cm (d) 4.0cm
- A chord is 5cm away from the center of a circle of radius 13cm. calculate the length of the chord. (a) 7cm (b) 9cm (c) 12cm (d) 24cm
- An equilateral triangle of side 3cm is inscribed in a circle. Find the radius of the circle (a) 2/3 cm (b) 3cm (c) 1cm (d) 2cm
- Factorize 6x2 + 7x-20 (a) (6x-5) (x+4) (b) 2(3x-5) (c) (x-3) (2x-5) (d) (3x-4)(2x+5)
- Factorize 2x2 + x-15 (a) (a) (2x-3)(x+5) (b) (x+3)(2x-5) (c) (x-3) (x-5) (d) (2x+3) (x-5)
- Factorize y2 + y (2p+q) + 2pq
- (y-2q)(2y-p) (b) (y-q)(y+q) (c) (y-q)(y-2q) (d) (2y+9)(y+p)
- Factorize 27p2 x2 – 48y2 (a) 9(3px-4y)2 (b) 3 (3px-4y)(3px-4y) (c) 9(Px-4y)(3px-4y) (d) 3(3px-4y)(3px+4y)
- Factorize 9(x+y)2 – 4(x-y)2 (a) (x+y)(5x+y) (b) (x+y)2 (c) (x+5y)(5x+y) (d) 5(x+y)
- Factorize m(2a-b) -2n(b-2a) (a) (2a-b)(2n-m) (b) (2a+b)(m-2n) (c) (2a-b)(m+2n) (d) (2a-b)(m-2n)
- If log2= 0.3010 and log 2y =1.8062. Find correct to the nearest whole number the value of y (a) 6 (b) 5 (c) 4 (d) -5
- In the diagram PQS= 650, RPS= 400 and QSR=200. Find PsQ (a) 850 (b) 600 (c) 550 (d) 450
- If logpq = T, express P in terms of q and r (a) P =qr (b) P = rq (c) P = r/q (d) P= qr
- Evaluate (3.2)2 –(4-8)2 (a) -0.80 (b) -1.60 (c) -10.24 (d) – 12.80 3.2 + 4.8
- Simplify log8 (a) 2/3 (b) ½ log 2 (c) 3/2 (d) log 2 Log 4 – log2
- In the diagram, angle 2000 is subtended at the center of the circle. (a) 300 (b) 500 (c) 800 (d) 1000
- Find the quadratic equation whose roots are –1/2 and 3 (a) 2x2 – 2x + 3= 0 (b) 2x2 – 2x- 3=0 (c) 2x2– 5x- 3=0 (d) 2x2 – 5x – 3= 0
- Simplify 0.000215 x 0.000028 and express your answer in standard form. (a) 6. 03 x 109 (b) 6. 02 x 109 (c) 6.03 x 10-9 (d) 6.02 x 10-9
- A car uses one litre of petrol every 14km. If one litre of petro cost N63, how far can the car go with N 900.00 worth of petrol? (a) 420km (b) 405km (c) 210 km (d) 200km
- Express (0.0425 2.5) as a fraction (a) 17/10,000 (b) 17/1000 (c) 17/250 (d) 17/10
- In a triangular ABC, /AC/ = 18m and /AB/ = 10m. if <ABC = 1200. Find angle ACB (a) 27.20 (b) 28.00 (c) 28.80 (d) 29.00
- Find the value of x in the figure below (a) 20√6 (b) 15√6 (c) 56 (d) 3√6
- Find the value of O in the diagram above (a) 300 (b) 600 (c) 1000 (d) 1200
- In a triangle PQR, PQ=1cm,QR= 2cm and PQR = 1200, find the largest side of the triangle (a) √3cm (b) 7cm (c) 3cm (d) 7cm
SECTION B
Answer question number 1 and any other 3
- (a) Use mathematical tables to evaluate √2.067 0.0348 x 0.538
- (b) Without using mathematical table or calculator, evaluate 0.18x 125 0.05 x 0.2
- (c) Evaluate and express your answer in standard form 4.56 x 3.6 0.12
- (d) Solve the simultaneous equations logx10 + logy10 =3, and logx10 + 2logy10= 3
- (e) Given that log210= 0.3010 and log 7 = 0.4771. calculate the value of
- log54 ii. Log0.24
- (a) An equilateral triangle of sides 30cm is inscribed in a circle. Calculate The radius of the circle
- Distance between the sides of the triangle and the centre of the circle
- The length of a chord of a circle is 10cm. if the radius of the circle is 13cm. Find the distance of the chord from the centre
- (a) Given that P= x+ym3, find M in terms of P,X and Y.
- (b) Using the method of completing the square, find the roots of the equations x2 – 6x + 7= 0. Correct to 1 decimal place.
- (c) The product of two consecutive positive odd numbers is 195. By constructing a quadratic equation and solving it, find the two numbers
- (a) If and B are the roots of the quadratic equation 2x2– 5x + 3= 0
- Find new equations whose roots are: (i) 2,B2 (ii) -1, B-1 (iii) 1/ , 1/
- (b) Find the sum and the product of the roots of the equation (a) 5x2 – 4x-9=0(b) 2x2+ 9x=6
- In a ∆ ABC, a= 7.1cm, b= 9.5cm and B= 63018. Solve the triangle completely
- N.B (credit will be given, for making a sketch of the given information)
- The sides of a parallelogram are 7cm and 10cm and one of its diagonals is 15cm. use the cosine formula to find the length of the other diagonal
- (a) Evaluate 4.762×0.007853
- 0.0129 using mathematical table
- (b) Evaluate log4√2 + log161/2 –log432
- (c) Calculate the length of the chord of a circle of radius 26cm, if the chord is 10cm from the center of the circle
- (d) Find the equation whose sum and product of roots are (i) -5,6 (ii) 1.5,-1.2